
Improve computional efficiency
with the latest programming languages.

Grzegorz Michalski, Andrzej Grosser
Institute of Computer and Information Sciences,

Faculty of Mechanical Engineering and Computer Science,
Czestochowa University of Technology, Czestochowa, Poland

IX Konferencja Modelowanie Matematyczne w Fizyce i Technice 2017 18-21 wrzesień 2017, Poraj

Introduction

Figure : Language popularity in 2015

Concurrency in C++ x17

Native C++ thread:

#include <iostream>

#include <thread>

using namespace std;

void func(int x) {

cout << "Inside thread " << x << endl;

}

int main() {

thread th(&func, 100);

th.join();

cout << "Outside thread" << endl;

return 0;

}

Built–in mutex example:

int accum = 0;

mutex accum_mutex;

void square(int x) {

int temp = x * x;

accum_mutex.lock();

accum += temp;

accum_mutex.unlock();

}

Model the build the system of equations – parrallel version

The values of elements in i–row of the coefficient matrix depend on the finite
elements, which include the node connected with the node with index i. A single
node in the finite element mesh can belong to several finite elements. No direct
method exists to identify these finite elements solely on the basis of the node index.
These indices can only be read from the finite element mesh. Fig. 2 shows the
process of building the global coefficient matrix. Non–zero elements of the global
coefficients matrix are determined as the sum of several values which depend on
those finite elements which include the pair of nodes with indexes corresponding
to the indexes of the row and column of those elements. Constructing the global
matrix of coefficient in this way definitely makes the parallelization process more
difficult.

Figure : Process of building the global coefficient matrix

CPP Language roadmap

Figure : CPP Language roadmap


